GW invariants and invariant quotients

نویسندگان

چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Degeneration Formula of Gw-invariants

This is the sequel to the paper [Li]. In this paper, we construct the virtual moduli cycles of the degeneration of the moduli of stable morphisms constructed in [Li]. We also construct the virtual moduli cycles of the moduli of relative stable morphisms of a pair of a smooth divisor in a smooth variety. Based on these, we prove a degeneration formula of the Gromov-Witten invariants.

متن کامل

Local GW Invariants of Elliptic Multiple Fibers

We use simple geometric arguments to calculate the dimension zero local Gromov-Witten invariants of elliptic multiple fibers. This completes the calculation of all dimension zero GW invariants of elliptic surfaces with pg > 0. Let X be a Kähler surface with pg > 0. By the Enriques-Kodaira classification (cf. [BHPV]), its minimal model is a K3 or Abelian surface, a surface of general type or an ...

متن کامل

Mirror Symmetry for Stable Quotients Invariants

The moduli space of stable quotients introduced by Marian-Oprea-Pandharipande provides a natural compactification of the space of morphisms from nonsingular curves to a nonsingular projective variety and carries a natural virtual class. We show that the analogue of Givental’s J-function for the resulting twisted projective invariants is described by the same mirror hypergeometric series as the ...

متن کامل

Elliptic GW invariants of blowups along curves and surfaces

Over the last few years, many mathematicians contributed their efforts to establish the mathematical foundation of the theory of quantum cohomology or Gromov-Witten (GW) invariants. In 1995, Ruan and Tian [13, 15] first established for the semipositive symplectic manifolds. Recently, the semipositivity condition has been removed by many authors. Now, the focus turned to the calculations and app...

متن کامل

Gromov–Witten invariants of symplectic quotients and adiabatic limits

We study pseudoholomorphic curves in symplectic quotients as adiabatic limits of solutions to the symplectic vortex equations. Our main theorem asserts that the genus zero invariants of Hamiltonian group actions defined by these equations are related to the genus zero Gromov–Witten invariants of the symplectic quotient (in the monotone case) via a natural ring homomorphism from the equivariant ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Commentarii Mathematici Helvetici

سال: 2002

ISSN: 0010-2571,1420-8946

DOI: 10.1007/s00014-002-8335-1